Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 12: 114, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22827966

RESUMO

BACKGROUND: Ecotypes of Colobanthus quitensis Kunt Bartl (Cariophyllaceae) from Andes Mountains and Maritime Antarctic grow under contrasting photoinhibitory conditions, reaching differential cold tolerance upon cold acclimation. Photoinhibition depends on the extent of photodamage and recovery capability. We propose that cold acclimation increases resistance to low-temperature-induced photoinhibition, limiting photodamage and promoting recovery under cold. Therefore, the Antarctic ecotype (cold hardiest) should be less photoinhibited and have better recovery from low-temperature-induced photoinhibition than the Andean ecotype. Both ecotypes were exposed to cold induced photoinhibitory treatment (PhT). Photoinhibition and recovery of photosystem II (PSII) was followed by fluorescence, CO2 exchange, and immunoblotting analyses. RESULTS: The same reduction (25%) in maximum PSII efficiency (Fv/Fm) was observed in both cold-acclimated (CA) and non-acclimated (NA) plants under PhT. A full recovery was observed in CA plants of both ecotypes under dark conditions, but CA Antarctic plants recover faster than the Andean ecotype.Under PhT, CA plants maintain their quantum yield of PSII, while NA plants reduced it strongly (50% and 73% for Andean and Antarctic plants respectively). Cold acclimation induced the maintenance of PsaA and Cyt b6/f and reduced a 41% the excitation pressure in Antarctic plants, exhibiting the lowest level under PhT. xCold acclimation decreased significantly NPQs in both ecotypes, and reduced chlorophylls and D1 degradation in Andean plants under PhT.NA and CA plants were able to fully restore their normal photosynthesis, while CA Antarctic plants reached 50% higher photosynthetic rates after recovery, which was associated to electron fluxes maintenance under photoinhibitory conditions. CONCLUSIONS: Cold acclimation has a greater importance on the recovery process than on limiting photodamage. Cold acclimation determined the kinetic and extent of recovery process under darkness in both C. quitensis ecotypes. The greater recovery of PSII at low temperature in the Antarctic ecotype was related with its ability to maintain PsaA, Cyt b6/f and D1 protein after photoinhibitory conditions. This is probably due to either a higher stability of these polypeptides or to the maintenance of their turnover upon cold acclimation. In both cases, it is associated to the maintenance of electron drainage from the intersystem pool, which maintains QA more oxidized and may allow the synthesis of ATP and NADPH necessaries for the regeneration of ribulose 1,5-bisphosphate in the Calvin Cycle. This could be a key factor for C. quitensis success under the harsh conditions and the short growing period in the Maritime Antarctic.


Assuntos
Aclimatação , Caryophyllaceae/química , Temperatura Baixa , Escuridão , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Regiões Antárticas , Dióxido de Carbono/química , Caryophyllaceae/fisiologia , Chile , Clorofila/química , Citocromos b6/química , Ecótipo , Fluorescência , Especificidade da Espécie , Amido/química , Proteínas das Membranas dos Tilacoides/química
2.
Extremophiles ; 7(6): 459-69, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12955601

RESUMO

Deschampsia antarctica Desv. is the only monocot that thrives in the harsh conditions of the Antarctic Peninsula and represents an invaluable resource for the identification of genes associated with freezing tolerance. In order to identify genes regulated by low temperature, we have initiated a detailed analysis of its gene expression. Preliminary 2-D gels of in vivo-labeled leaf proteins showed qualitative and quantitative differences between cold-acclimated and non-acclimated plants, suggesting differential gene expression. Similarly, cold-acclimation-related transcripts were screened by a differential display method. Of the 38 cDNAs initially identified, three cDNA clones were characterized for their protein encoding, expression pattern, response to several stresses, and for their tissue-specific expression. Northern blot analysis of DaGrx, DaRub1, and DaPyk1 encoding a glutaredoxin, a related-to-ubiquitin protein, and a pyruvate kinase-like protein, respectively, showed a distinct regulation pattern during the cold-acclimation process, and in some cases, their cold response seemed to be tissue specific. All three transcripts seem to be responsive to water stress as their levels were up-regulated with polyethyleneglycol treatment. DaRUB1 and DaPyk1 expression was up-regulated in leaf and crown, but down-regulated in roots from cold-acclimated plants. The significance of these results during the cold-acclimation process will be discussed.


Assuntos
Aclimatação , Temperatura Baixa , Genes de Plantas , Poaceae/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Alinhamento de Sequência , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...